Package: amen 1.4.4

amen: Additive and Multiplicative Effects Models for Networks and Relational Data

Analysis of dyadic network and relational data using additive and multiplicative effects (AME) models. The basic model includes regression terms, the covariance structure of the social relations model (Warner, Kenny and Stoto (1979) <doi:10.1037/0022-3514.37.10.1742>, Wong (1982) <doi:10.2307/2287296>), and multiplicative factor models (Hoff(2009) <doi:10.1007/s10588-008-9040-4>). Several different link functions accommodate different relational data structures, including binary/network data, normal relational data, zero-inflated positive outcomes using a tobit model, ordinal relational data and data from fixed-rank nomination schemes. Several of these link functions are discussed in Hoff, Fosdick, Volfovsky and Stovel (2013) <doi:10.1017/nws.2013.17>. Development of this software was supported in part by NIH grant R01HD067509.

Authors:Peter Hoff [aut, cre], Bailey Fosdick [aut], Alex Volfovsky [aut], Yanjun He [ctb]

amen_1.4.4.tar.gz
amen_1.4.4.zip(r-4.5)amen_1.4.4.zip(r-4.4)amen_1.4.4.zip(r-4.3)
amen_1.4.4.tgz(r-4.4-any)amen_1.4.4.tgz(r-4.3-any)
amen_1.4.4.tar.gz(r-4.5-noble)amen_1.4.4.tar.gz(r-4.4-noble)
amen_1.4.4.tgz(r-4.4-emscripten)amen_1.4.4.tgz(r-4.3-emscripten)
amen.pdf |amen.html
amen/json (API)
NEWS

# Install 'amen' in R:
install.packages('amen', repos = c('https://pdhoff.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/pdhoff/amen/issues

Datasets:
  • IR90s - International relations in the 90s
  • YX_bin - Binary relational data and covariates
  • YX_bin_long - Binary relational data and covariates
  • YX_cbin - Censored binary nomination data and covariates
  • YX_frn - Fixed rank nomination data and covariates
  • YX_nrm - Normal relational data and covariates
  • YX_ord - Ordinal relational data and covariates
  • YX_rrl - Row-specific ordinal relational data and covariates
  • addhealthc3 - AddHealth community 3 data
  • addhealthc9 - AddHealth community 9 data
  • coldwar - Cold War data
  • comtrade - Comtrade data
  • dutchcollege - Dutch college data
  • lazegalaw - Lazega's law firm data
  • sampsonmonks - Sampson's monastery data
  • sheep - Sheep dominance data

On CRAN:

6.76 score 27 stars 143 scripts 507 downloads 47 exports 0 dependencies

Last updated 4 years agofrom:aa6ca84d04. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 09 2024
R-4.5-winNOTENov 09 2024
R-4.5-linuxNOTENov 09 2024
R-4.4-winNOTENov 09 2024
R-4.4-macNOTENov 09 2024
R-4.3-winNOTENov 09 2024
R-4.3-macNOTENov 09 2024

Exports:addlinesameame_repcircplotdesign_arrayel2smgofstatsldZgbmellsrmRhomhalfnetplotprecomputeXraSab_bin_fcraSab_cbin_fcraSab_frn_fcrbeta_ab_fcrbeta_ab_rep_fcrmvnormrrho_fcrrho_mhrrho_mh_reprs2_fcrs2_rep_fcrSab_fcrSuv_fcrUV_fcrUV_rep_fcrUV_sym_fcrwishrZ_bin_fcrZ_cbin_fcrZ_frn_fcrZ_nrm_fcrZ_ord_fcrZ_rrl_fcrZ_tob_fcsimY_binsimY_frnsimY_nrmsimY_ordsimY_rrlsimY_tobsimZsm2elXbetaxnetzscores

Dependencies:

DIY modeling of a binary network outcome

Rendered fromdiy_binary_demo.Rmdusingknitr::rmarkdownon Nov 09 2024.

Last update: 2020-12-07
Started: 2018-07-31

DIY overdispersed Poisson network model

Rendered fromdiy_Poisson_demo.Rmdusingknitr::rmarkdownon Nov 09 2024.

Last update: 2020-12-07
Started: 2018-07-31

Modeling a binary network outcome

Rendered frombinary_demo.Rmdusingknitr::rmarkdownon Nov 09 2024.

Last update: 2020-12-07
Started: 2018-05-30

Readme and manuals

Help Manual

Help pageTopics
Additive and Multiplicative Effects Models for Networks and Relational Dataamen-package amen
AddHealth community 3 dataaddhealthc3
AddHealth community 9 dataaddhealthc9
Add linesaddlines
AME model fitting routineame
AME model fitting routine for replicated relational dataame_rep
Circular network plotcircplot
Cold War datacoldwar
Comtrade datacomtrade
Computes the design socioarray of covariate valuesdesign_array
Dutch college datadutchcollege
Edgelist to sociomatrixel2sm
Goodness of fit statisticsgofstats
International relations in the 90sIR90s
Lazega's law firm datalazegalaw
log density for GBME modelsldZgbme
SRM log likelihood evaluated on a grid of rho-valuesllsrmRho
Symmetric square root of a matrixmhalf
Network plottingnetplot
Plot results of an AME objectplot.ame
Precomputation of design matrix quantities.precomputeX
Simulate a and Sab from full conditional distributions under bin likelihoodraSab_bin_fc
Simulate a and Sab from full conditional distributions under the cbin likelihoodraSab_cbin_fc
Simulate a and Sab from full conditional distributions under frn likelihoodraSab_frn_fc
Conditional simulation of additive effects and regression coefficientsrbeta_ab_fc
Gibbs sampling of additive row and column effects and regression coefficient with independent replicate relational datarbeta_ab_rep_fc
Simulation from a multivariate normal distributionrmvnorm
Griddy Gibbs update for dyadic correlationrrho_fc
Metropolis update for dyadic correlationrrho_mh
Metropolis update for dyadic correlation with independent replicate datarrho_mh_rep
Gibbs update for dyadic variancers2_fc
Gibbs update for dyadic variance with independent replicate relational datars2_rep_fc
Gibbs update for additive effects covariancerSab_fc
Gibbs update for multiplicative effects covariancerSuv_fc
Gibbs sampling of U and VrUV_fc
Gibbs sampling of U and VrUV_rep_fc
Gibbs sampling of U and VrUV_sym_fc
Simulation from a Wishart distributionrwish
Simulate Z based on a probit modelrZ_bin_fc
Simulate Z given fixed rank nomination datarZ_cbin_fc
Simulate Z given fixed rank nomination datarZ_frn_fc
Simulate missing values in a normal AME modelrZ_nrm_fc
Simulate Z given the partial ranksrZ_ord_fc
Simulate Z given relative rank nomination datarZ_rrl_fc
Simulate Z based on a tobit modelrZ_tob_fc
Sampson's monastery datasampsonmonks
Sheep dominance datasheep
Simulate a network, i.e. a binary relational matrixsimY_bin
Simulate an relational matrix based on a fixed rank nomination schemesimY_frn
Simulate a normal relational matrixsimY_nrm
Simulate an ordinal relational matrixsimY_ord
Simulate an relational matrix based on a relative rank nomination schemesimY_rrl
Simulate a tobit relational matrixsimY_tob
Simulate Z given its expectation and covariancesimZ
Sociomatrix to edgelistsm2el
Summary of an AME objectsummary.ame
Linear combinations of submatrices of an arrayXbeta
Network embeddingxnet
binary relational data and covariatesYX_bin
binary relational data and covariatesYX_bin_long
Censored binary nomination data and covariatesYX_cbin
Fixed rank nomination data and covariatesYX_frn
normal relational data and covariatesYX_nrm
ordinal relational data and covariatesYX_ord
row-specific ordinal relational data and covariatesYX_rrl
rank-based z-scoreszscores