Package: eigenmodel 1.11

eigenmodel: Semiparametric Factor and Regression Models for Symmetric Relational Data

Estimation of the parameters in a model for symmetric relational data (e.g., the above-diagonal part of a square matrix), using a model-based eigenvalue decomposition and regression. Missing data is accommodated, and a posterior mean for missing data is calculated under the assumption that the data are missing at random. The marginal distribution of the relational data can be arbitrary, and is fit with an ordered probit specification. See Hoff (2007) <arxiv:0711.1146> for details on the model.

Authors:Peter Hoff

eigenmodel_1.11.tar.gz
eigenmodel_1.11.zip(r-4.5)eigenmodel_1.11.zip(r-4.4)eigenmodel_1.11.zip(r-4.3)
eigenmodel_1.11.tgz(r-4.4-any)eigenmodel_1.11.tgz(r-4.3-any)
eigenmodel_1.11.tar.gz(r-4.5-noble)eigenmodel_1.11.tar.gz(r-4.4-noble)
eigenmodel_1.11.tgz(r-4.4-emscripten)eigenmodel_1.11.tgz(r-4.3-emscripten)
eigenmodel.pdf |eigenmodel.html
eigenmodel/json (API)

# Install 'eigenmodel' in R:
install.packages('eigenmodel', repos = c('https://pdhoff.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • YX_Friend - Sex, race and friendship data from a 12th grade classroom
  • Y_Gen - Relations between words in the 1st chapter of Genesis
  • Y_Pro - Butland's protein-protein interaction data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.78 score 5 packages 22 scripts 1.8k downloads 1 mentions 11 exports 0 dependencies

Last updated 5 years agofrom:d4c9f03f0b. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:addlineseigenmodel_mcmceigenmodel_setupplot.eigenmodel_postrb_fcrmvnormrUL_fcrZ_fcULUXBY_impute

Dependencies: