Package: eigenmodel 1.11

eigenmodel: Semiparametric Factor and Regression Models for Symmetric Relational Data

Estimation of the parameters in a model for symmetric relational data (e.g., the above-diagonal part of a square matrix), using a model-based eigenvalue decomposition and regression. Missing data is accommodated, and a posterior mean for missing data is calculated under the assumption that the data are missing at random. The marginal distribution of the relational data can be arbitrary, and is fit with an ordered probit specification. See Hoff (2007) <arxiv:0711.1146> for details on the model.

Authors:Peter Hoff

eigenmodel_1.11.tar.gz
eigenmodel_1.11.zip(r-4.5)eigenmodel_1.11.zip(r-4.4)eigenmodel_1.11.zip(r-4.3)
eigenmodel_1.11.tgz(r-4.5-any)eigenmodel_1.11.tgz(r-4.4-any)eigenmodel_1.11.tgz(r-4.3-any)
eigenmodel_1.11.tar.gz(r-4.5-noble)eigenmodel_1.11.tar.gz(r-4.4-noble)
eigenmodel_1.11.tgz(r-4.4-emscripten)eigenmodel_1.11.tgz(r-4.3-emscripten)
eigenmodel.pdf |eigenmodel.html
eigenmodel/json (API)

# Install 'eigenmodel' in R:
install.packages('eigenmodel', repos = c('https://pdhoff.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:
  • YX_Friend - Sex, race and friendship data from a 12th grade classroom
  • Y_Gen - Relations between words in the 1st chapter of Genesis
  • Y_Pro - Butland's protein-protein interaction data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.62 score 5 packages 22 scripts 1.3k downloads 1 mentions 11 exports 0 dependencies

Last updated 6 years agofrom:d4c9f03f0b. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 07 2025
R-4.5-winOKFeb 07 2025
R-4.5-macOKFeb 07 2025
R-4.5-linuxOKFeb 07 2025
R-4.4-winOKFeb 07 2025
R-4.4-macOKFeb 07 2025
R-4.3-winOKFeb 07 2025
R-4.3-macOKFeb 07 2025

Exports:addlineseigenmodel_mcmceigenmodel_setupplot.eigenmodel_postrb_fcrmvnormrUL_fcrZ_fcULUXBY_impute

Dependencies: